Ray Optics Name: JUNYUXV Ray Tracing Worksheet - Lenses Period: **Convex Lenses** The Image is: Upright, Inverted, Neither Real, Virtual, No Image Magnified, Minified, Same Size Closer, Farther, Same Distance to the Observer Closer, Farther, Same Distance to the Lens The Image is: Upright, Inverted, Neither Real, Virtual, No Image Magnified, Minified, Same Size Closer, Farther, Same Distance to the Observer Closer, Farther, Same Distance to the Lens observer The Image is: Upright, Inverted, Neither Upright, Inverted, Neither Real, Virtual, No Image Magnified, Minified, Same Size Closer, Farther, Same Distance to the Observer Closer, Farther, Same Distance to the Lens ## The Thin Lens Equation We are going to attempt to derive an expression to assist us in determining an image's position given the focal length of a lens and an object's position. 1. First, Label the following on the figure above: Object Height h_o , Image Height h_i , Object Distance s_o , Image Distance s_i , and Focal Length f. 2. Write an Expression which relates h_o , h_i , s_o , & s_i using the similar triangles formed with θ_1 . Green Triangles 3. Solve Equation (2) for h_i . 4. Write an Expression which relates f, h_o , h_i , & $(f_i - f)$ using the similar triagles formed with θ_2 . Blue Triangles 5. Solve Equation (4) for $$h_i$$. $h_i = h_i = h_i$ $h_i = h_i = h_i$ - 6. Set the two h_i 's equal to each other - 8. Separate s_i and f into two fractions. - 9. Divide both sides by s_t - 10. Isolate $\frac{1}{f}$