Ray Optics Name: JUNYUXV Ray Tracing Worksheet - Lenses Period: **Convex Lenses** The Image is: Upright, Inverted, Neither Real, Virtual, No Image Magnified, Minified, Same Size Closer, Farther, Same Distance to the Observer Closer, Farther, Same Distance to the Lens The Image is: Upright, Inverted, Neither Real, Virtual, No Image Magnified, Minified, Same Size Closer, Farther, Same Distance to the Observer Closer, Farther, Same Distance to the Lens observer The Image is: Upright, Inverted, Neither

Upright, Inverted, Neither
Real, Virtual, No Image
Magnified, Minified, Same Size
Closer, Farther, Same Distance to the Observer
Closer, Farther, Same Distance to the Lens

The Thin Lens Equation

We are going to attempt to derive an expression to assist us in determining an image's position given the focal length of a lens and an object's position.

1. First, Label the following on the figure above: Object Height h_o , Image Height h_i , Object Distance s_o , Image Distance s_i , and Focal Length f.

2. Write an Expression which relates h_o , h_i , s_o , & s_i using the similar triangles formed with θ_1 . Green Triangles

3. Solve Equation (2) for h_i .

4. Write an Expression which relates f, h_o , h_i , & $(f_i - f)$ using the similar triagles formed with θ_2 . Blue Triangles

5. Solve Equation (4) for
$$h_i$$
.

 $h_i = h_i = h_i$
 $h_i = h_i = h_i$

- 6. Set the two h_i 's equal to each other
- 8. Separate s_i and f into two fractions.
- 9. Divide both sides by s_t
- 10. Isolate $\frac{1}{f}$